Intersection and Decomposition Algorithms for Planar Arrangements
This book presents a study of various problems related to arrangements of lines, segments, or curves in the plane.
The first problem is a proof of almost tight bounds on the length of (n,s)-Davenport-Schinzel sequences, a technique for obtaining optimal bounds for numerous algorithmic problems. Then the intersection problem is treated. The final problem is improving the efficiency of partitioning algorithms, particularly those used to construct spanning trees with low stabbing numbers, a very versatile tool in solving geometric problems. A number of applications are also discussed.
Product details
April 1991Hardback
9780521404464
294 pages
238 × 156 × 19 mm
0.556kg
Available
Table of Contents
- Introduction
- 1. Davenport–Schinzel sequences
- 2. Red-blue intersection detection algorithms
- 3. Partitioning arrangements of lines
- 4. Applications of the partitioning algorithm
- 5. Spanning trees with low stabbing number
- Bibliography
- Index of symbols
- Index of keywords.